文心一言-千帆大模型平台
  1. SFT
文心一言-千帆大模型平台
  • 体验中心
  • 常见问题
  • 大模型技术测试服务协议
  • 账号与权限管理
    • 账号创建与权限分配
    • 通过子账户隔离实现账单隔离
  • 产品简介
    • 什么是百度智能云千帆大模型平台
    • 百度智能云千帆大模型平台产品优势
    • 百度智能云千帆大模型平台常用概念
  • 新手指南
    • SFT调优快速手册
    • SFT最佳实践
    • 平台使用快速开始
    • 导入并部署第三方模型
      • 快速导入并部署第三方模型
      • SQLCoder自定义模型导入·详细操作
  • 模型广场
    • 查看与管理预置模型
    • 预置调用免费模型列表
  • 我的模型
    • 创建我的模型
    • 查看与管理我的模型
  • Prompt 工程
    • 什么 Prompt 工程
    • Prompt 模板
    • Prompt 优化
    • Prompt 工程使用技巧
      • Prompt 的使用技巧
      • 基础的 Basic Prompt Framework
      • 丰富的 CRISPE Prompt Framework
      • 轻量化的 Few-shot Prompt
  • 模型服务
    • 应用接入
    • 在线服务
    • 调用统计
  • 模型调优
    • 模型精调
      • Post-pretrain
        • 什么是 Post-pretrain
        • 创建 Post-pretrain 任务
        • 查看与管理 Post-pretrain
      • SFT
        • 创建 SFT 任务
        • 查看与管理 SFT 运行
      • RLHF
        • 什么是 RLHF 训练
        • 创建奖励模型训练任务
        • 查看与管理奖励模型训练运行
        • 创建强化学习训练任务
        • 查看与管理强化学习训练运行
    • 模型评估
      • 创建模型评估任务
      • 查看与管理模型评估任务
    • 模型压缩
      • 创建模型压缩任务
      • 查看模型压缩任务
  • 数据管理
    • 数据回流
    • 数据集对应关系说明
    • 数据集管理
      • 创建数据集
      • 数据分析
      • 导入文本对话数据
      • 导入泛文本无标注数据
      • 导入 query 问题集数据
      • 导入文生图数据
      • 管理数据集版本
      • 导出数据
      • 数据集的其他操作
    • 数据标注
      • 在线标注
      • 众测标注
    • 数据处理
      • 数据清洗
      • 数据增强
    • 知识库
      • 什么是千帆大模型知识库
      • 知识库管理
      • 命中测试
  • 系统配置
    • 计算资源
    • 计费管理
    • 插件编排
      • 什么是插件应用
      • 插件编排使用说明
      • 应用创建
        • 对话场景类应用
        • 生成场景类应用
      • 插件
        • 插件列表
        • 自定义插件
        • 插件开发者文档
  • API 鉴权及调用
    • API 介绍
    • API 列表
    • API 调用指南
      • API 调用流程
      • 错误码
      • API 在线调试
    • 鉴权认证
      • 鉴权介绍
      • 使用网页调试工具获取 access_token
      • 获取 access_token
    • 对话 Chat
      • Llama-2
        • Llama-2-7b-chat
        • Llama-2-13b-chat
        • Llama-2-70b-chat
      • ERNIE-Bot 4.0
      • ERNIE-Bot
      • ERNIE-Bot-turbo
      • BLOOMZ-7B
      • Qianfan-BLOOMZ-7B-compressed
      • Mistral-7B-Instruct
      • Qianfan-Chinese-Llama-2-7B
      • Qianfan-Chinese-Llama-2-13B
      • Linly-Chinese-LLaMA-2-7B
      • Linly-Chinese-LLaMA-2-13B
      • ChatGLM2-6B
      • ChatGLM2-6B-32K
      • ChatGLM2-6B-INT4
      • Baichuan2-13B-Chat
      • XVERSE-13B-Chat
      • Falcon-7B
      • Falcon-40B-Instruct
      • AquilaChat-7B
      • RWKV-4-World
      • RWKV-4-pile-14B
      • RWKV-Raven-14B
      • OpenLLaMA-7B
      • Dolly-12B
      • MPT-7B-Instruct
      • MPT-30B-instruct
      • OA-Pythia-12B-SFT-4
      • Falcon-180B-Chat
      • RWKV-5-World
      • Flan-UL2
    • 续写 Completions
      • SQLCoder-7B
      • CodeLlama-7b-Instruct
      • AquilaCode-multi
      • Cerebras-GPT-13B
      • Pythia-12B
      • GPT-J-6B
      • GPT-NeoX-20B
      • GPT4All-J
      • StarCoder
      • StableLM-Alpha -7B
      • Pythia-6.9B
      • Cerebras-GPT-6.7B
    • 向量 Embeddings
      • Embedding-V1
      • bge-large-zh
      • bge-large-en
    • 图像 Images
      • Stable-Diffusion-XL
    • 自定义模型调用 API
      • 自定义模型调用 API
      • 续写模式
    • 模型服务
      • 创建服务
      • 查询服务详情
    • 模型管理
      • 获取模型版本详情
      • 获取模型详情
      • 训练任务发布为模型
    • 模型调优
      • 创建训练任务
      • 创建任务运行
      • 获取任务运行详情
      • 停止任务运行
    • 数据管理
      • 创建数据集
      • 发起数据集发布任务
      • 发起数据集导入任务
      • 获取数据集详情
      • 获取数据集状态详情
      • 发起数据集导出任务
      • 删除数据集
      • 获取数据集导出记录
      • 获取数据集导入错误详情
    • Prompt 工程
      • Prompt 模板
    • 插件应用
      • 知识库
      • 智慧图问
      • 天气
  • SDK 参考
    • 千帆 SDK 介绍
    • SDK 安装及使用流程
    • 对话 Chat
    • 续写 Completions
    • 向量 Embeddings
    • 模型服务
      • 创建服务
      • 查询服务详情
    • 模型管理
      • 获取模型详情
      • 获取模型版本详情
      • 训练任务发布为模型
    • 模型调优
      • 创建训练任务
      • 创建任务运行
      • 获取任务运行详情
      • 停止任务运行
    • 数据管理
      • 创建数据集
      • 发起数据集发布任务
      • 发起数据集导入任务
      • 获取数据集详情
      • 获取数据集状态详情
      • 发起数据集导出任务
      • 删除数据集
      • 获取数据集导出记录
      • 获取数据集导入错误详情
    • 插件应用
      • 知识库
      • 智能图问
      • 天气
  • 价格说明
    • 千帆大模型平台价格文档
  1. SFT

创建 SFT 任务

SFT实际上是Fine-Tuning的训练模式,开发者可以选择适合自己任务场景的训练模式并加以调参训练,从而实现理想的模型效果。
登录到千帆大模型操作台,在左侧功能列选择SFT,进入SFT主任务界面。

创建任务#

您需要在SFT任务界面,选择“创建训练任务”按钮。
填写好任务名称后,在范围内选择所属行业和应用场景,再进行500字内的业务描述即可。
image.png
当您选择“创建并训练”则直接开启训练模型的运行配置界面;“完成创建”仅创建任务不创建训练模型的运行。
当前支持SFT任务具备大语言模型和文生图大模型两种任务类型。

大语言模型#

新建运行#

您可以在创建任务时选择“创建并训练”,或者在SFT任务列表中,选择指定任务的“新建运行”按钮。
进入模型训练的任务运行配置页,填写基本信息。
image.png

训练配置#

训练配置大模型参数,调整好基本配置。
image.png
在SFT训练任务中,可以选择开启增量训练开关。需注意的是,基准模型为“全量更新”训练出来的模型,才支持开启此开关。
开关打开后,需要选择SFT的基准模型,此模型来源于运行中的SFT任务。所以您开启增量训练任务的前提有已经在运行中的SFT任务。
image.png
注意:基础模型继承基准模型(全量更新所得)版本,所以当您选定基准模型后,基础模型及版本不可变更。
您也可以选择直接不使用增量训练,这样直接在基础模型上进行SFT。
image.png

·ERNIE-Bot-turbo#

百度自行研发的大语言模型,覆盖海量中文数据,具有更强的对话问答、内容创作生成等能力。
ERNIE-Bot-turbo-0725#
单条数据支持8k Tokens,且扩展支持LoRA训练方法。
训练方法简单描述
全量更新全量更新在训练过程中对大模型的全部参数进行更新
LoRALoRA在固定预训练大模型本身的参数的基础上,在保留自注意力模块中原始权重矩阵的基础上,对权重矩阵进行低秩分解,训练过程中只更新低秩部分的参数。
参数配置
超参数简单描述
迭代轮次迭代轮次(epoch),控制训练过程中的迭代轮数。
学习率学习率(learning_rate)是在梯度下降的过程中更新权重时的超参数,过高会导致模型难以收敛,过低则会导致模型收敛速度过慢,平台已给出默认推荐值,可根据经验调整。
序列长度单条数据的长度,单位为token。如果数据集中每条数据的长度(输入)都在4096 tokens 以内,建议选择4096,针对短序列可以达到更优的训练效果。
ERNIE-Bot-turbo-0704#
修复输出不稳定等问题。
训练方法简单描述
全量更新全量更新在训练过程中对大模型的全部参数进行更新
Prompt TuningPrompt Tuning在固定预训练大模型本身的参数的基础上,增加prompt embedding参数,并且训练过程中只更新prompt参数。
LoRALoRA在固定预训练大模型本身的参数的基础上,在保留自注意力模块中原始权重矩阵的基础上,对权重矩阵进行低秩分解,训练过程中只更新低秩部分的参数。
如您选择的训练方法为Prompt Tuning,则支持模型发布在线服务到公共资源池。
参数配置
超参数简单描述
迭代轮次迭代轮次(epoch),控制训练过程中的迭代轮数。
学习率学习率(learning_rate)是在梯度下降的过程中更新权重时的超参数,过高会导致模型难以收敛,过低则会导致模型收敛速度过慢,平台已给出默认推荐值,可根据经验调整。
ERNIE-Bot-turbo-0516#
ERNIE-Bot-turbo经典版本
训练方法简单描述
全量更新全量更新在训练过程中对大模型的全部参数进行更新
参数配置
超参数简单描述
迭代轮次迭代轮次(epoch),控制训练过程中的迭代轮数。
批处理大小批处理大小(BatchSize)表示在每次训练迭代中使用的样本数。较大的批处理大小可以加速训练,但可能会导致内存问题。
学习率学习率(learning_rate)是在梯度下降的过程中更新权重时的超参数,过高会导致模型难以收敛,过低则会导致模型收敛速度过慢,平台已给出默认推荐值,可根据经验调整。

·BLOOMZ-7B#

知名的大语言模型,由HuggingFace研发并开源,能够以46种语言和13种编程语言输出文本。
训练方法简单描述
全量更新全量更新在训练过程中对大模型的全部参数进行更新
Prompt Tuning在固定预训练大模型本身的参数的基础上,增加prompt embedding参数,并且训练过程中只更新prompt参数。
LoRA在固定预训练大模型本身的参数的基础上,在保留自注意力模块中原始权重矩阵的基础上,对权重矩阵进行低秩分解,训练过程中只更新低秩部分的参数。
参数配置
超参数简单描述
迭代轮次迭代轮次(epoch),控制训练过程中的迭代轮数。
批处理大小批处理大小(Batchsize)表示在每次训练迭代中使用的样本数。较大的批处理大小可以加速训练,但可能会导致内存问题。
学习率学习率(learning_rate)是在梯度下降的过程中更新权重时的超参数,过高会导致模型难以收敛,过低则会导致模型收敛速度过慢,平台已给出默认推荐值,可根据经验调整。

Llama-2#

Llama 是Facebook 推出的开源大语言模型。千帆团队在开源模型基础上做了中文增强。
Llama-2-7b#
Qianfan-Chinese-Llama-2-7b,千帆团队在Llama-2-7b基础上的中文增强版本。
训练方法简单描述
全量更新全量更新在训练过程中对大模型的全部参数进行更新
Prompt Tuning在固定预训练大模型本身的参数的基础上,增加prompt embedding参数,并且训练过程中只更新prompt参数。
LoRA在固定预训练大模型本身的参数的基础上,在保留自注意力模块中原始权重矩阵的基础上,对权重矩阵进行低秩分解,训练过程中只更新低秩部分的参数。
参数配置
超参数简单描述
迭代轮次迭代轮次(epoch),控制训练过程中的迭代轮数。
批处理大小批处理大小(Batchsize)表示在每次训练迭代中使用的样本数。较大的批处理大小可以加速训练,但可能会导致内存问题。
学习率学习率(learning_rate)是在梯度下降的过程中更新权重时的超参数,过高会导致模型难以收敛,过低则会导致模型收敛速度过慢,平台已给出默认推荐值,可根据经验调整。
Llama-2-13b#
Qianfan-Chinese-Llama-2-13b,千帆团队在Llama-2-13b基础上的中文增强版本。
训练方法简单描述
全量更新全量更新在训练过程中对大模型的全部参数进行更新
Prompt Tuning在固定预训练大模型本身的参数的基础上,增加prompt embedding参数,并且训练过程中只更新prompt参数。
LoRA在固定预训练大模型本身的参数的基础上,在保留自注意力模块中原始权重矩阵的基础上,对权重矩阵进行低秩分解,训练过程中只更新低秩部分的参数。
参数配置
超参数简单描述
迭代轮次迭代轮次(epoch),控制训练过程中的迭代轮数。
批处理大小批处理大小(Batchsize)表示在每次训练迭代中使用的样本数。较大的批处理大小可以加速训练,但可能会导致内存问题。
学习率学习率(learning_rate)是在梯度下降的过程中更新权重时的超参数,过高会导致模型难以收敛,过低则会导致模型收敛速度过慢,平台已给出默认推荐值,可根据经验调整。

·SQLCoder-7B#

由Defog研发、基于Mistral-7B微调的语言模型,用于将自然语言问题转换为SQL语句,具备优秀的生成效果。使用Apache 2.0、CC-BY-SA-4.0协议。根据CC-BY-SA-4.0协议要求,您需要将修改后的模型权重在CC-BY-SA-4.0license中开源。
训练方法简单描述
全量更新全量更新在训练过程中对大模型的全部参数进行更新
LoRA在固定预训练大模型本身的参数的基础上,在保留自注意力模块中原始权重矩阵的基础上,对权重矩阵进行低秩分解,训练过程中只更新低秩部分的参数。
参数配置
超参数简单描述
迭代轮次迭代轮次(epoch),控制训练过程中的迭代轮数。
批处理大小批处理大小(Batchsize)表示在每次训练迭代中使用的样本数。较大的批处理大小可以加速训练,但可能会导致内存问题。
学习率学习率(learning_rate)是在梯度下降的过程中更新权重时的超参数,过高会导致模型难以收敛,过低则会导致模型收敛速度过慢,平台已给出默认推荐值,可根据经验调整。

·ChatGLM2-6B#

智谱AI与清华KEG实验室发布的中英双语对话模型,具备强大的推理性能、效果、较低的部署门槛及更长的上下文,在MMLU、CEval等数据集上相比初代有大幅的性能提升。
训练方法简单描述
全量更新全量更新在训练过程中对大模型的全部参数进行更新
LoRA在固定预训练大模型本身的参数的基础上,在保留自注意力模块中原始权重矩阵的基础上,对权重矩阵进行低秩分解,训练过程中只更新低秩部分的参数。
参数配置
超参数简单描述
迭代轮次迭代轮次(epoch),控制训练过程中的迭代轮数。
批处理大小批处理大小(Batchsize)表示在每次训练迭代中使用的样本数。较大的批处理大小可以加速训练,但可能会导致内存问题。
学习率学习率(learning_rate)是在梯度下降的过程中更新权重时的超参数,过高会导致模型难以收敛,过低则会导致模型收敛速度过慢,平台已给出默认推荐值,可根据经验调整。

·Baichuan2-13B-Chat#

单条数据支持4096 tokens。Baichuan2-13B-Chat 是百川智能推出的新一代开源大语言模型,采用2.6万亿Tokens的高质量语料训练。
训练方法简单描述
全量更新全量更新在训练过程中对大模型的全部参数进行更新
LoRA在固定预训练大模型本身的参数的基础上,在保留自注意力模块中原始权重矩阵的基础上,对权重矩阵进行低秩分解,训练过程中只更新低秩部分的参数。
参数配置
超参数简单描述
迭代轮次迭代轮次(epoch),控制训练过程中的迭代轮数。
学习率学习率(learning_rate)是在梯度下降的过程中更新权重时的超参数,过高会导致模型难以收敛,过低则会导致模型收敛速度过慢,平台已给出默认推荐值,可根据经验调整。

数据配置#

训练任务的选择数据及相关配置,大模型调优任务需要匹配多轮对话-非排序类的数据集。
image.png
数据集来源可以为千帆平台已发布的数据集版本或者预置数据集,也可以为已有数据集的BOS地址,详细内容可查看数据集部分内容。
数据拆分比例:比如设置20,则表示选定数据集版本总数的80%作为训练集,20%作为验证集。
若数据集保存在BOS中,请勿在提交任务后修改BOS数据。修改后可能会导致任务失败!
需注意:当选择BOS目录导入数据集时,数据放在jsonl文件夹下。您需要选择jsonl的父目录:
奖励模型支持单轮对话、多轮对话有排序数据。
RLHF训练支持仅prompt数据。
SFT支持单轮对话,多轮对话需要有标注数据。
BOS目录导入数据要严格遵守其格式要求,如不符合此格式要求,训练作业无法成功开启。详情参考BOS导入无标注信息格式和BOS导入有标注信息格式。
百度BOS服务开通申请,关于训练费用可查看价格文档。
以上所有操作完成后,点击“开始训练”,则发起模型训练的任务。

文生图大模型#

image.png

新建运行#

您可以在创建任务时选择“创建并训练”,或者在SFT任务列表中,选择指定任务的“新建运行”按钮。
进入模型训练的任务运行配置页,填写基本信息。
image.png

训练配置#

训练配置大模型参数,调整好基本配置。
image.png
在SFT训练任务中,可以选择开启增量训练开关。
开关打开后,需要选择SFT的基准模型,此模型来源于运行中的SFT任务。所以您开启增量训练任务的前提有已经在运行中的SFT任务。
image.png
注意:基础模型继承基准模型(全量更新所得)版本,所以当您选定基准模型后,基础模型及版本不可变更。
您也可以选择直接不使用增量训练,这样直接在基础模型上进行SFT。
image.png

·Stable_diffusion XL 1.0#

业内知名的跨模态大模型,由StabilityAI研发并开源,有着业内领先的图像生成能力。
训练方法简单描述
LoRA在固定预训练大模型本身的参数的基础上,在保留自注意力模块中原始权重矩阵的基础上,对权重矩阵进行低秩分解,训练过程中只更新低秩部分的参数。
参数配置
超参数简单描述
迭代轮次迭代轮次(epoch),控制训练过程中的迭代轮数。
批处理大小批处理大小(Batchsize)表示在每次训练迭代中使用的样本数。较大的批处理大小可以加速训练,但可能会导致内存问题。
学习率学习率(learning_rate)是在梯度下降的过程中更新权重时的超参数,过高会导致模型难以收敛,过低则会导致模型收敛速度过慢,平台已给出默认推荐值,可根据经验调整。

数据配置#

训练任务的选择数据及相关配置,支持选择该模型可使用的数据。
image.png
文生图大模型调优任务需要选择图片类型的数据集,且数据集个数应为10-2000张图片,若大于2000张,将会随机选择2000张作为训练数据。
数据集来源可以为千帆平台已发布的数据集版本,也可以为已有数据集的BOS地址,详细内容可查看数据集部分内容。
数据拆分比例:比如设置20,则表示选定数据集版本总数的80%作为训练集,20%作为验证集。
若数据集保存在BOS中,请勿在提交任务后修改BOS数据。修改后可能会导致任务失败!
需注意:当选择BOS目录导入数据集时,数据放在jsonl文件夹下。
百度BOS服务开通申请。

资源配置#

文生图大模型支持将训练加入GPU,当前默认规格如下:
image.png
以上所有内容完成后,即可发起模型训练任务。
关于训练费用可查看价格文档。大模型训练模块会根据数据集大小,预估训练时长,其中最小计量粒度为0.01小时,不足0.01小时按0.01小时计算。
上一页
查看与管理 Post-pretrain
下一页
查看与管理 SFT 运行
Built with